Obtaining Detailed Structural Information about Supramolecular Systems on Surfaces by Combining High-Resolution Force Microscopy with \textit{ab Initio} Calculations

Shigeki Kawai,†,* Ali Sadeghi,† Xu Feng,‡ Peng Lifen,‡ Rémy Pawlak,‡ Thilo Glatzel,† Alexander Willand,† Akihiro Orita,‡ Junzo Otera,‡ Stefan Goedecker,‡ and Ernst Meyer†

†Department of Physics, University of Basel, Klingbergstrasse 82, 4056 Basel, Switzerland and ‡Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan

ABSTRACT State-of-the-art experimental techniques such as scanning tunneling microscopy have great difficulties in extracting detailed structural information about molecules adsorbed on surfaces. By combining atomic force microscopy and Kelvin probe force microscopy with \textit{ab initio} calculations, we demonstrate that we can obtain a wealth of detailed structural information about the molecule itself and its environment. Studying an FFPB molecule on a gold surface, we are able to determine its exact location on the surface, the nature of its bonding properties with neighboring molecules that lead to the growth of one-dimensional strips, and the internal torsions and bendings of the molecule.

KEYWORDS: self-assembly · chemical structure · NC-AFM · KPFM

Ever since the invention of scanning probe microscopy,¹ the study of supramolecular assembly on surfaces was of particular interest to gain an understanding of intermolecular interactions in the nanoscale regime.²–⁸ The actual arrangement of the supramolecular structures is the result of a delicate balance between the molecule–molecule and molecule–substrate interactions.⁹ Among the intermolecular interactions, directional hydrogen bonding⁴ and dipole–dipole interactions¹⁰ are more interesting than nondirectional van der Waals (vdW)¹¹ and electrostatic interactions, because they allow some control over the growth of the assembly. Furthermore, the temperature of the substrate is a very important parameter, for example, to force the system into a lower energy state, to modify the absorption site by heating or for the incorporation of metal atoms,¹² and for decorating the substrate.¹³ Also the partial dissociation of a molecular subunit that induces polymerization allows altering the structure of the supramolecular assembly.¹⁴

In the case where donor and acceptor molecules are deposited on the surface, these molecules interact \textit{via} strong dipoles, and hence a controlled structure can be fabricated.¹⁵ Fluorine can be incorporated to the molecule by replacing the hydrogens in the benzene ring of some polycyclic aromatic compounds, \textit{e.g.}, phthalocyanine¹⁶ or pentacene.¹⁷ Due to the strong electron affinity of fluorine, the fluoro-substituted molecule acts as an acceptor molecule on the C–F bonds. Aiming to fabricate \textit{p}–\textit{n} type junctions of molecule-based electronic devices, the F-substituted molecules and conventional donor-type molecules have been co-deposited while controlling the mixing ratio.¹⁸,¹⁹ The directional hydrogen bonding between two molecules is known to be a driving force in the assembly \textit{via}
indirect molecular-scale measurements by scanning tunneling microscopy (STM), but so far the hydrogen bonding itself or its influence on a single molecule in the supramolecular structure has never been studied.

In this work, we present clear evidence that the directional hydrogen bonding leads to a unidirectional growth of the supramolecular chain on a metallic substrate. The chemical structure, which could not be determined in the STM study mentioned before, is revealed by high-resolution atomic force microscopy (AFM); furthermore, the local charge caused by F-substitution is directly sensed by Kelvin probe force microscopy (KPFM). Finally, density functional theory (DFT) calculations based on the microscopy data allow reconstructing details of the supramolecular geometry on the atomic scale and help to complete the understanding of the experimental results.

RESULTS AND DISCUSSION

STM Observation. Figure 1a shows the chemical structure of 4-[4-(2,3,4,5,6-pentafluorophenylethynyl)-2,3,5,6-tetrafluorophenylethynyl]phenylethynylbenzene (FFPB). In FFPB, four benzene rings are connected by ethynylene units, and two of them are substituted with fluorine. The Au(110)-(1×2) surface is shown schematically in Figure 1b. We observed a one-dimensional supramolecular structure (Figure 1c). The molecular rows can be grown longer than 80 nm. The molecular assembly is oriented in two equivalent directions, [111] and [111], on the Au(110) surface, which make ±35.3° angles with the substrate atomic row, i.e., the [110] direction. Each individual molecule in the chain aligns (approximately) along the [223] direction. A minority of FFPB molecules, indicated with red arrows, stay singly along the [110] direction. After annealing the substrate to 400 K, however, all molecules aligned along the [110] direction and the (1×2) reconstruction changed to a (1×5) reconstruction (see Supporting Information).

Figure 1d,e shows the high-resolution STM images, taken with tip bias voltages of 1.6 and −1.6 V, respectively. Although FFPB has four benzene rings, only three maxima are observed. (Four maxima are observed for the single FFPBs that align along the [110] direction. See Supporting Information.) STM has been shown to be a powerful tool for a real space measurement with high spatial and energy resolution. Yet, since the local density of states (LDOS) near the Fermi level is responsible for the STM contrast, the delocalized molecular orbitals often hinder the determination of the chemical structure. Then ab initio calculations are required to corroborate the experimental result where the arrangement of the molecules is deduced from the measured STM image. A potential conformation is obtained when the intermolecular distance along the growth direction ([111]) is half of the substrate inter-row distance in that direction, i.e., \(\sqrt{3}a = 7 \) Å, \(a \) being the substrate lattice constant. Such a lattice matching is preserved by in-plane rotation of the molecules with respect to the growth direction and/or sliding adjacent molecules oppositely along their symmetry axes. Exploring all of the possible metastable conformations by geometry optimization to find the most stable confirmation is not feasible because of the computational effort for DFT calculations on such a large molecular system. Moreover, the pronounced spots in the STM images in Figure 1d,e are on top of the surface atoms, which means they depend mainly on the substrate electronic properties rather than the molecule geometry. In particular, the H- and F-terminated rings of the FFPB molecules are indistinguishable in the STM images, and one cannot determine the orientation of one molecule with respect to the neighboring ones. Therefore, the substrate’s obscure contributions to the STM images make it hard to deduce detailed information about the molecular arrangement.

Chemical Structure. In contrast to STM, AFM senses the total electron density. Especially, when the tip—sample separation is small enough, the tip detects the short-range Pauli repulsive interaction, and even the inner structure of the single molecule can be resolved in the frequency shift map of the oscillating tuning fork sensor.20–24 Here, this technique is applied to identify the real chemical structure of the FFPB supramolecular assembly. Prior to the measurement, the Au tip was terminated with the FFPB molecule. FFPB was picked up from the surface while recording the tunneling current (Figure 2a). A distinct signal, compared to the case in a Au–Au junction, indicates the termination of the FFPB molecule on the tip.25,26 With the molecule tip, a high bias voltage (3 V) is required to scan the surface with STM without damaging the self-assembly. Figure 2c shows the high-resolution AFM image of the supramolecular structure,
taken with the molecule tip. Since the surface was scanned in the repulsive region at constant height mode, brighter regions of the contrast in the frequency shift map correspond to higher corrugation amplitudes of the FFPB on the surface. In contrast to the STM topography, a detailed chemical structure of each FFPB is clearly observed. In response to the substrate corrugation, benzene rings of FFPB have rotated and/or bent around the highly flexible C–C bonds connecting them to the rigid C=C=C bonds. This causes nonuniformity in the Δf maps along the FFPB, as seen in Figure 2c. Especially, rotations of two benzene units at one side generate lines pointing out from the FFPB sheet. Since the covalent (like the ionic) radius of the fluorine atom is more than twice as long as that of the hydrogen atom, this subtle feature presumably indicates the part of F-substitution.

In order to gain a better understanding of our AFM measurements, especially concerning the detailed geometry of the molecular assembly on the surface, we performed a series of DFT calculations. A few candidate conformations were constructed based on the AFM images and then relaxed to minimize the DFT energy. The molecular conformation corresponding to the lowest energy, depicted in Figure 2d, is highly deformed (twisted and bent). Two fluoro-benzene rings (5 and 7 in Figure 2d) rotate in opposite senses to each other, resulting in a high contrast of lateral C–C bonds, while the triple bond located between H-benzenes (2 in Figure 2d) goes down, causing low contrast of this bond. The energy cost of applying such a deformation to an isolated molecule is 0.16 eV, which is much smaller than the binding energy (15.6 eV per molecule).

On the basis of the theoretically resolved chemical structure of the FFPB molecule, the STM images can also be better understood. Figure 2d shows that both H-benzene rings (1 and 3) lie on the atomic rows of Au(110)-(1×2). They are almost centered on the gap between two adjacent Au atoms, and we therefore attribute them to the two alike maxima in the measured STM image (Figure 1d,e). On the F-substituted
half, however, the ethynylene moiety (6) sits on an Au atom and thus corresponds to the third (longer) bright spot, which partially involves the π-system of adjacent F-benzenes.

Contrary to the isotropic vDW interactions, hydrogen bonds are directional. The strength of the C–H···F bond is maximal when it is linear and in general depends on the angle between the C–H and H···F bonds. However, as seen in the relaxed conformation with DFT shown in Figure 2d, the tilt and rotation of each benzene ring, caused by the geometrical deformation of FFPB on the atomically-corrugated Au(111)-(1×2) surface, vary the distance and angle of the weak C–H···F hydrogen bonding (shown by arrows). This finding is in good agreement with the previous bulk crystal measurement. Indeed, phenyleneethynylene (exclusively H-substituted analogue of FFPB) molecules cannot form a one-dimensional supramolecular structure (see Supporting Information). Note that for such an FFPB molecule, which has an array of donor and acceptor sites on each side, the stability of the supramolecular structure depends also on the attractive and repulsive secondary hydrogen interactions.

Local Contact Potential Difference. Since the features of the frequency shift map do not allow unambiguously determining the precise orientation of the molecule, we additionally measured the charge distribution using KPFM with a Au-terminated tip. Recently, the resolution has been demonstrated to be high enough to resolve internal charge states of a single molecule on a thin NaCl film. We used a similar protocol in our previous systematic Z distance-dependent measurement at room temperature. The relative tip–sample distance was readjusted with an atom tracking function (at the maxima indicated by a circle with an arrow in Figure 3a) before each bias voltage-dependent measurement of the frequency shift and tunneling current (see Supporting Information). Figure 3b shows two examples of the frequency shift versus bias voltage curves, measured at sites (i) and (ii) in Figure 3a. By fitting the measured data to a parabola, a significant shift of the local contact potential difference (LCPD) was obtained as $\Delta V_{\text{LCPD}} = 10.4 \text{ mV}$. For each measurement point, the LCPD and the corresponding Δf_{LCPD} were calculated and mapped as shown in Figure 3c,d, respectively. The current map (Figure 3e) shows a similar contrast to that observed in the STM topography (Figure 3a); namely, the adjacent molecules have the identical contrast with an opposite direction. This is due to the fact that the molecules are adsorbed on almost identical sites of the Au(110)-(1×2) surface (Figure 2d). In contrast to the tunneling current map, the LCPD map shows different contrasts in the adjacent...
molecules (Figure 3c). Since in KPFM measurements the mesoscopic structures of tip and sample contribute to signals by long-range interactions, the measured LCPD is the result from an averaged value between the short- and long-range interactions. There is most probably an asymmetric LCPD field in the measurement area. In fact, the difference drastically decreases by subtracting a linear gradient from the measured LCPD map (see Supporting Information). In the LCPD map, the dipole and charge states play a role in the contrast. In this system, the strongly electronegative fluorine atoms induce local dipoles stronger than those on the CH bonds. An individual FFPB has no net dipole moment in the lateral direction because of the cancellation of the local dipoles. Only the F−C and H−C bonds on the two opposing longitudinal ends give rise to a net dipole moment along the molecular axis, which, according to our DFT calculations, turns out to be 4.27 D (i.e., 2.3 times larger than that of the water molecule). As the alignment of the benzene rings is not perfectly parallel to the surface (see bottom panel in Figure 2d), the vertical component of the F−H dipoles is not precisely zero; however, since the tilting angles are small, their contribution to the vertical LCPD measurement should be marginal. Therefore, the dipole of the molecule cannot contribute a major part to the LCPD contrast. Due to the electronegativity of the fluorine atom, F-substituted benzene rings in FFPB act as an acceptor. In more detail, the individual fluorine atoms act as an acceptor with respect to the bonded carbon, and so the π-electron density of the benzene ring is reduced and acts as a donor in the end. A similar effect occurs between adjacent FFPB molecules. However, since the distance of the H⋯H bond (weak hydrogen bonding) is larger than that of C−F, the magnitude of the reduced π-electron density in the H-benzene is smaller than that in the F-substituted benzene. Therefore, in this supramolecular structure, the F-substituted benzene ring would exhibit a smaller π-electron density compared to the bare benzene ring in the neighboring FFPB. It is worth noting that the charge transfer between the benzene rings is negligible (within 0.01 or 0.06 e based on the Bader or Mulliken charges, respectively). Since the bias voltage is applied to the tip, the negatively charged part has a more negative LCPD value. Therefore, the direction of each FFPB can be reliably concluded as shown in Figure 3f. Indeed, our DFT calculations show that for the other orientation, i.e., the conformation obtained by switching the F and H atoms, the binding energy is higher by 0.70 eV per molecule. Further, we plot the electrostatic potential at a distance 2.5 Å above the molecular plane (Figure 3g), obtained by summing up the ionic and Hartree potentials calculated from the converged wave function for the relaxed structure. The pattern shows an excellent agreement with the measured LCPD (Figure 3c) and even better after subtracting the linear gradient (Figure S2b). For a qualitatively accurate calculation of the LCPD, both macroscopic and microscopic contributions from a scanning probe should be taken into account.

CONCLUSION

In summary, we present a one-dimensional supramolecular structure on Au(110)-(1×2). The complex chemical structure is revealed by atomic force microscopy, clearly showing that the directional hydrogen bonding plays a major part in the driving force of the self-assembly. The detailed geometrical deformations of the molecule on the substrate (including the tilt and rotation of the benzene rings as well as the bending of the connecting C−C bonds) as relaxed with density functional calculations are in perfect agreement with those imaged by atomic force microscopy. Furthermore, Kelvin probe force microscopy measurements allow assessing the charge distribution of the molecule and experimentally identify the site of the fluorosubstitution in each molecule. Therefore, the combination of high-resolution atomic force microscopy, Kelvin force microscopy, and density functional theory calculation can elucidate not only the detailed chemical structure of a single molecule but also that of a complex supramolecular system.

METHODS

Experimental Measurement. All measurements were performed with a commercially available Omicron low-temperature STM/AFM system, operating in ultrahigh vacuum at 4.8 K. We used a tuning fork with a chemically etched tungsten tip as a force sensor. The high stiffness of 1800 N/m realizes a stable operation with a small amplitude of 38 pm, which was calibrated by the current control method. The small-amplitude operation enhances the detection sensitivity to the short-range tip–sample interaction, and hence the spatial resolution can be improved. The resonance frequency and its mechanical quality factor were 23 297 Hz and 68 930, respectively. The frequency shift, caused by the tip–sample interaction, was detected with a commercially available digital phase-locked loop (Nanonis: OC-4).

In order to avoid crosstalk between the STM and AFM detection lines, the tip was electrically decoupled to the detection line of the tuning fork sensor oscillation with a separate Au wire. In the measurement, no significant correlation between the energy dissipation and tunneling current signals was detected (see Supporting Information). For the STM measurement, the bias voltage was applied to the tip while the sample was electronically grounded. A clean metal tip was in situ prepared by indenting the Au sample surface several times and so that the tip apex was terminated by Au atoms. A clean Au(110)-(1×2) surface was in situ prepared by repeated cycles of standard Ar+ sputtering (3×10^−5 mbar, 1000 eV, and 15 min) and annealing at 450°. The typical width of the Au(110) terrace was 100 nm. In this experiment, we have used 4-(4-(2,3,4,5,6-pentafluorophenylethynyl)-2,3,5,6-tetrafluorophenylethynyl)phenylethynylbenzene (FFPB) molecules and conventional nonsubstituted...
phenyleneethynylene molecules \(^{40}\) FFPB and the phenyleneethynylene molecules were deposited on the surfaces from crucibles of the Knudsen cell and resistively heated at 140/125 \(^{15}\) after degassing at 100\(^{\circ}\) for several days. The temperature of the substrate was kept at 120 K. Recorded data were analyzed using the WSXM software.\(^ {51}\)

We performed two-dimensional bias voltage-dependent measurements of the liquid helium. Since no contrast change in the STM topography (50 pA and \(500 \text{ mV}\)), indicated with a circle in Figure 3a, before the bias-dependent measurement. After the tip was moved to the measurement point, the tip—sample separation was decreased by 50 pm for the measurement. Unlike for the room-temperature measurement with a silicon cantilever, the thermal drift of the resonance frequency was negligible. The whole measurement was carried out during 16 h and 33 min, which was restricted by the refilling cycle of the liquid helium. Since no contrast change in the STM topography was observed after the measurement, the tip condition most probably stayed constant in the whole measurement.

Theoretical Calculation. All DFT calculations were carried out within the generalized gradient approximation with the PBE exchange—correlation functional\(^ {36}\) using the Vienna \textit{ab initio} simulation package (VASP).\(^ {45,46}\) Interactions between core and valence electrons were described by the frozen-core projector-augmented wave (PAW) method,\(^ {45,46}\) while the valence electron wave functions were expanded using a plane-wave basis set with a kinetic energy cutoff of 400 eV. It has been shown that the PBE exchange—correlation functional accurately describes the hydrogen bonds.\(^ {31}\) We also take into account the long-range vdW interaction using the semiempirical dispersion-corrected DFT (DFT-D2) method by Grimme.\(^ {52}\) The \(C_6\) parameter was set to 40.62, 1.720, 0.140, and 0.75 and the \(R_0\) parameter to 1.772, 1.452, 1.001, and 1.287 for Au, C, H, and F atoms, respectively.

REFERENCES AND NOTES

Dissipation signal in the KPFM measurement

It was recently figured out that the cross-talk in between the tunneling current and the
deflection signal induces artifacts in measurements, using a tuning fork sensor.¹ In simulta-

¹To whom correspondence should be addressed

Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland.

Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan.
neous STM and AFM measurements, the tunneling current modulated by the oscillating tip, and since the bandwidth of the I/V converter for the tunneling current is usually narrower than the eigen and its higher harmonic frequencies of the oscillation, the potential of the tip is also modulated with the frequency. Consequently, an artificial interaction in between two prongs of tuning fork sensor appears, mainly in the dissipation signal, and secondly in the frequency shift signal. This phenomenon is the so-called cross-talk issue. However, if the current line does not go through the one prong, the so-called separate tunneling line, the magnitude of this cross-talk can be drastically reduced. In our measurement, the tuning fork with a separate current line was used, and no significant cross-talk was observed with a tunneling current at least up to 1–2 nA. Figure S1 shows the dissipation map extracted from the three-dimensional bias voltage dependent measurement, at -500 mV. In contrast to the strong contrast in the corresponding current map, no significant contrast was observed. This result clearly sustains the absence of the cross-talk in between the tunneling current and the deflection signal in our measurement.

Figure S1: Extracted dissipation energy map at the applied bias voltage of -500 mV via the three-dimensional bias voltage dependent measurement in figure 3 of the main text.
Subtracting a linear gradient from the measured LCPD map

In KPFM measurements, the mesoscopic tip and sample structure contribute to signals by long-range interactions.4,5 If there are an asymmetric LCPD and force fields in the measurement area (site-dependent long-range electrostatic interaction), the linear shift can appear in the first approximation. This is the case that we have in our measurement. In fact, both signals (figure 3c and 3d) show in-plane shifts. This shift induces the change of the LCPD contrast between two adjacent molecules, which are adsorbed on equivalent atomic sites of the substrate. The F-substituted benzene ring at the end of the second molecule from left (figure 3c of the main text) has a lower value of LCPD, compared to that of the third molecule. In the same way, the H-benzene ring at the end of the third molecule from left has a lower value of LCPD, compared to that of the second molecule. This feature indicates that there is a positive gradient of LCPD along the Y direction. Also in the Δf map, we can observe a similar gradient in the Y direction, but since the force field measured with a metallic tip has no significant difference between F- and non-substituted part, it has a reflection symmetry along the Y direction. But in the case of LCPD, these two parts have different values of LCPD and so that no symmetry is observed. Since the current signal has no significant gradient in the Y direction (figure 3e of the main text), these observed gradients in the LCPD and Δf maps are not due to the sample tilt, but are due to the site-dependent mesoscopic interactions. In order to prove this, we subtracted a linear gradient from the LCPD map. Figure S2 shows the assumed gradient and the plane corrected LCPD maps. As can be seen, we can now clearly observe similar contrasts in the second and third molecules. The pattern of the corrected LCPD map is very similar to the calculated electrostatic potential in figure 3g of the main text.
Figure S2: (a) Assumed linear gradient map of LCPD, caused by a site-dependent long-range electrostatic interaction. (b) Plane-corrected LCPD map, calculated by subtracting the map in (a) from the LCPD map in figure 3(c) of the main text.

Observation with a metal tip

In the main text, we showed the chemical structure of the supramolecular assembly, obtained with a FFPB molecule tip. The termination of the molecule at the tip apex is beneficial to reduce the reactivity and hence the molecule can be imaged at the repulsive interaction region while avoiding to damage the structure. With a clean metal tip, the structure was often decorated by the scanning tip before the tip-sample separation was set close enough to detect the repulsive interaction. Figure S3 shows the highest resolution image, obtained with a metal tip. Since the tip stays in the attractive region, the individual molecules are observed as dark spots (more negative frequencies). No real chemical structure was detected, yet the observed four benzene rings and the C≡C bondings can also indicate the real position of the molecules in the supramolecular structure.

TEMPERATURE DEPENDENT SUPRAMOLECULAR STRUCTURE

In the main text, we discussed the chemical structure of the supramolecular assembly, analyzed with a combination of AFM, kelvin probe force microscopy and density functional theory. Here, we show the transition of the structure changed by annealing (Figure S4).
Figure S3: (a) Simultaneous recorded tunneling current and (b), frequency shift maps at constant height mode. Measurement parameters: $V_{\text{tip}} = 1 \text{ mV}$ and $A = 30 \text{ pm}$.

The FFPB molecules were deposited on the Au(110)-$(\sqrt{2} \times 2)$ surface, whose temperature was kept at 100 K. Then, the surface was observed after cooling down to 4.8 K. Just like in Figure 1c of the main text, a one-dimensional supramolecular structure (type 1) was observed (Figure S4a). Except for the step edge, almost all FFPB molecules are incorporated to the structure. Next, we deposited FFPB molecules on a clean surface, whose temperature was slightly higher (150 K). Two additional structures (type 2 and type 3) appear as indicated with arrows. In the type 2 structure, the FFPB molecules are aligned in an alternative fashion as observed in the type 1 structure, but the direction of the growth is along the $[\bar{1}10]$ direction. The different adsorption geometry on the $(\sqrt{2} \times 2)$ structure, arising from the different orientation of the growth, most probably leads to the zigzag structure with a larger shift of the molecule. In the type 3 structure, individual FFPBs align along the $[1\bar{1}0]$ direction and tend to form a head-to-tail configuration due to the directional C–H⋯F hydrogen bonding. After the sample is annealed to 300 K, the length of the type 1 structure becomes shorter, and the ratio of the type 3 structure on the surface becomes larger (Figure S4c). Interestingly, we observed the transition structure, in which the type 2 structure was changing to the type 3 structure. We can find some fragments of FFPB, observed as two protrusions. The molecules were broken during the annealing. The reaction seems to be related to the process of the substrate reconstruction because the initial structure of the molecule stays even at higher annealing temperature. With consequent annealing to 330
K, no type 1 nor type 2 structures were observed, while type 3 structures and individual FFPBs are found randomly distributed but aligned along the [1\bar{1}0] direction (Figure S4d). Finally, after annealing at 400 K, all molecules aligned along the [1\bar{1}0] direction (Figure S4e). Interestingly, the initial \((1\times2)\) reconstructed substrate was changed to the \((1\times5)\) structure, in which the \((1\times2)\) and \((1\times3)\) reconstructed structures are alternatively ordered. After the sample was annealed at 450 K, no molecule on the surface was observed (not shown here).

Figure S4: (a) STM topography of the FFPB molecules, deposited on the Au(110)-(\textit{i} \times 2) surface, keeping at 100 K and (b) at 150 K. (c) After annealing at 300 K, (d) 330 K, and (e) 400 K. Measurement parameters; \(V_{\text{tip}} = 2 \text{ V}\) and \(A=20 \text{ pm}\) in (a), \(V_{\text{tip}} = 2.5 \text{ V}\) and \(A=50 \text{ pm}\) in (b), \(V_{\text{tip}} = 2 \text{ V}\) and \(A=20 \text{ pm}\) in (c), \(V_{\text{tip}} = 2 \text{ V}\) and \(A=20 \text{ pm}\) in (d), and \(V_{\text{tip}} = 2.5 \text{ V}\) and \(A=50 \text{ pm}\) in (e).
Impact of the Fluoro-substitution

The FFPB (Figure S5a) and non-substituted phenyleneethynylene molecules (Figure S5b) were deposited on the Au(110)-(i × 2) surface, and the influence of the CF⋯HC hydrogen bonding to the self-assembly was analyzed. As discussed in the main text, the directional hydrogen bonding leads to a one-dimensional supramolecular structure (Figure S5c). Contrary, no ordered assembly was observed with non-substituted phenyleneethynylene molecules (Figure S5d). This comparison gives an indirect evidence that the hydrogen bonding plays a role in the self-assembly. Since the gap of two FFPB molecules is smaller than that of non-substituted phenyleneethynylene molecules, the hydrogen bonding is much stronger than the van der Waals interaction. In both cases, three maxima are observed for each molecule, which indicates that the STM contrast mainly comes from the molecule-substrate interactions.

Figure S5: (a) Schematic drawings of the FFPB and (b) non-substituted phenyleneethynylene molecules. (c) STM topographies, showing the supramolecular structure of the FFPB molecule and (d) the non-ordered structure of the non-substituted phenyleneethynylene molecules. Measurement parameters; 40 pA and 2.5 V in (c) and 30 pA and 2.5 V in (d)
DFT calculation for single molecules along the $[\bar{1}10]$ direction

A few FFPB molecules are singly adsorbed along the $[\bar{1}10]$ direction, as shown by red arrows in Figure 1 of the main text. We interpreted in this case that four lobes of FFPB are observed in the STM topography. In order to explain the difference with the most favor conformation where three spots per molecule are observed in the STM topography, we performed DFT calculation for several possible structures. In the most stable configuration, depicted in Figure S6 and in agreement with the STM topography, the molecule axis is not on top the atomic row of $(i \times 2)$ substrate. The FFPB molecule stays in the groove of the $(i \times 2)$ surface and the longitudinal axis of the molecule is offset from the center of the groove, inducing the rotation of the whole molecule around its axis. Hence, one side of each of the four benzene rings points up. Since the current flows through the four benzene rings, we can observe four protrusions for a single molecule along the $[\bar{1}10]$ direction.
References

